Mr-price.ru

МР Прайс
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

СНиП II-25-80 от. Деревянные конструкции. Часть 2

СНиП II-25-80 от 01.01.1982. Деревянные конструкции. Часть 2

Примечание. — радиус кривизны гнутой доски или бруска; а — толщина гнутой доски или бруска в радиальном направлении.

3.3. Расчетные сопротивления строительной фанеры приведены в табл.10.

В необходимых случаях значения расчетных сопротивлений строительной фанеры следует умножать на коэффициенты и приведенные в пп.3.2,а; 3.2,б; 3.2,в; 3.2,г; 3.2,к настоящих норм.

3.4. Упругие характеристики и расчетные сопротивления стали и соединений стальных элементов деревянных конструкций следует принимать по главе СНиП по проектированию стальных конструкций, а арматурных сталей — по главе СНиП по проектированию бетонных и железобетонных конструкций.

Расчетные сопротивления ослабленных нарезкой тяжей из арматурных сталей следует умножать на коэффициент 0,8, а из других сталей — принимать по главе СНиП по проектированию стальных конструкций как для болтов нормальной точности. Расчетные сопротивления двойных тяжей следует снижать умножением на коэффициент 0,85.

растяжению в плоскости листа

сжатию в плоскости листа

изгибу из плоскости листа

1. Фанера клееная березовая марки ФСФ сортов В/BB, B/C, BB/C:

а) семислойная толщиной 8 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

б) пятислойная толщиной 5-7 мм:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

2. Фанера клееная из древесины лиственницы марки ФСФ сортов B/BB и ВВ/C семислойная толщиной 8 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

3. Фанера бакелизированная марки ФБС толщиной 7 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

Примечание. Расчетные сопротивления смятию и сжатию перпендикулярно плоскости листа для березовой фанеры марки ФСФ 4 МПа (40 кгс/кв.см) и марки ФБС 8 МПа (80 кгс/кв.см).

1. Фанера клееная березовая марки ФСФ сортов B/BB, B/C, BB/C семислойная и пятислойная:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

2. Фанера клееная из древесины лиственницы марки ФСФ сортов В/BB и ВВ/C семислойная:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

3. Фанера бакелизированная марки ФБС:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

Примечание. Коэффициент Пуассона указан для направления, перпендикулярного оси, вдоль которой определен модуль упругости

3.5. Модуль упругости древесины при расчете по предельным состояниям второй группы следует принимать равным: вдоль волокон =10 000 МПа (100 000 кгс/кв.см); поперек волокон 400 МПа (4 000 кгс/кв.см). Модуль сдвига древесины относительно осей, направленных вдоль и поперек волокон, следует принимать равным 500 МПа (5 000 кгс/кв.см). Коэффициент Пуассона древесины поперек волокон при напряжениях, направленных вдоль волокон, следует принимать равным = 0,5, а вдоль волокон при напряжениях, направленных поперек волокон, 0,02.

Величины модулей упругости и сдвига строительной фанеры в плоскости листа и и коэффициент Пуассона при расчете по второй группе предельных состояний следует принимать по табл.11.

Модуль упругости древесины и фанеры для конструкций, находящихся в различных условиях эксплуатации, подвергающихся воздействию повышенной температуры, совместному воздействию постоянной и временной длительной нагрузок, следует определять умножением указанных выше величин и на коэффициент в табл.5 и коэффициенты и , приведенные в пп.3.2, б и 3.2, в настоящих норм.

Модуль упругости древесины и фанеры в расчетах конструкций (кроме опор ЛЭП) на устойчивость и по деформированной схеме следует принимать равным для древесины ( расчетное сопротивление сжатию вдоль волокон, принимаемое по табл.3), а модуль сдвига относительно осей, направленных вдоль и поперек волокон, для фанеры — принимаются по табл.10, 11).

4. Расчет элементов деревянных конструкций

А. Расчет элементов деревянных конструкций

по предельным состояниям первой группы

Центрально-растянутые и центрально-сжатые элементы

4.1. Расчет центрально-растянутых элементов следует производить по формуле

Механические свойства древесины

Древесина вследствие волокнистого строения отличается высокой прочностью при растяжении и сжатии вдоль волокон и значительно меньшей — поперек волокон. У хвойных пород предел прочности при сжатии вдоль волокон в 10-12 раз больше, чем поперек, а у лиственных — в 5-8 раз. Механическая прочность древесины в значительной степени зависит от объемной массы; с увеличением объемной массы древесины повышается прочность.

Прочность зависит от влажности — с повышением влажности она уменьшается. На прочность древесины оказывает влияние лишь изменение количества гигроскопической влаги. При повышении влажности выше точки насыщения волокон прочность древесины практически не уменьшается.

Прочность древесины характеризуется пределом прочности, т.е. напряжением, равным отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади его сечения. Деформация древесины может быть различной не только в зависимости от величины действующих сил, но и от продолжительности их воздействия. Так, при кратковременном воздействии определенной силы деформация может быть упругой, а при длительном воздействии той же силы — остаточной и тем большей, чем длительнее воздействие.

Во многих деревянных конструкциях древесина работает на сжатие, смятие, скалывание, изгиб и реже на растяжение как вдоль, так и поперек волокон. В связи с этим древесину испытывают, главным образом, на сжатие вдоль и поперек волокон, на скалывание и изгиб.

Прочность древесины при сжатии вдоль волокон. Это одно из важных механических свойств древесины. Сопротивление сжатию вдоль волокон составляет значительную величину и колеблется у различных пород от 40 до 60 МПа при стандартной влажности 12% и от 20 до 40 МПа при влажности выше 30%. Сжатие древесины вдоль волокон имеет важное значение при использовании ее для мебели, свай, стоек, стропильных ферм и т. д.

Предел прочности о 12, Па, вычисляют по формуле Оц * Pab. Здесь Р — максимальное разрушающее усилие, Н; а и b — ширина и толщина образца, м.

Прочность древесины при сжатии поперек волокон. При сжатии древесины поперек волокон в зависимости от породы и направления сжатия (радиального, тангентального) деформация может быть равномерной — однофазной и неравномерной — трехфазной. В последнем случае при испытании вначале наблюдается повышение напряжений и деформации (фаза), затем прирост напряжений почти прекращается и наблюдается только увеличение деформации образца (фаза), далее напряжения начинают возрастать (фаза). Вследствие наличия пофазной деформации испытания на сжатие поперек волокон ведут с регистрацией как усилий, так и величин деформации. За условный предел прочности при сжатии поперек волокон принимают напряжение, соответствующее пределу пропорциональности, т.е. максимальное значение напряжения на прямолинейном участке диаграммы. Условный предел в 6-10 раз меньше чем при сжатии вдоль волокон.

Прочность при растяжении вдоль волокон. При растяжении древесины вдоль волокон показатель прочности имеет наибольшие значения. Деформация древесины при растяжении (удлинение образца) незначительна. Разрушение происходит в виде разрыва тканей. При высокой прочности разрыв длинноволокнистый, а при низкой — раковистый, почти гладкий. Прочность древесины на растяжение вдоль волокон зависит от породы древесины и находится в пределах 70-170 МПа при

влажности 12%. Увеличение влажности приводит к некоторому снижению прочности. Предел прочности определяют по формуле а = Pmax/bh. Здесь b и h — ширина и толщина рабочей части образца, см; Ртах — максимальная нагрузка, предшествующая разрушению образца; Н.

Прочность при растяжении поперек волокон. Древесина сравнительно слабо сопротивляется растяжению поперек волокон. Величина предела прочности при растяжении вдоль волоконца если есть трещины, это значение вообще может упасть до нуля. Поэтому на практике древесину не применяют для работы на растяжение поперек волокон. Определение величины прочности древесины на растяжение поперек волокон необходимо для разработки безопасных в отношении растрескивания режимов сушки и для обоснования режимов резания.

Читать еще:  Лиственные породы деревьев список

Прочность древесины при статическом изгибе. При изгибе древесины возникают напряжения растяжения на выпуклой стороне и напряжения сжатия на вогнутой. Кроме того, возникают касательные напряжения при скалывании вдоль волокон. Сопротивление древесины статическому изгибу имеет большое значение во многих конструкциях, изготовляемых из нее, — мебели, лыжах, балках, стропилах, мостах. Предел прочности древесины при статическом изгибе в зависимости от породы колеблется в пределах 70-150 МПа (при влажности 12%). Увеличение влажности приводит к снижению предела прочности до 40-90 МПа (при влажности 30% и выше). Предел прочности при нагружении образца в центре о12 = ЗР ax/2bh 2 . Здесь — расстояние между центрами опор, см; b — ширина образца, см; h — высота образца (в направлении действия силы), см .

Прочность древесины при сдвиге. При сдвиге на древесину действуют две равные и противоположные по направлению силы. Многие конструкции узлов мебели, мостов, ферм работают на сдвиг. При сдвиге действуют касательные силы, расположенные в плоскости, параллельной действию внешних сил.

Испытание на сдвиг возможно в трех направлениях: скалывание вдоль волокон, скалывание поперек волокон, перерезание древесины поперек волокон. Каждый вид испытания молено проводить в радиальном и тангентальном направлениях. Всего возможны шесть случаев испытания на сдвиг. Наиболее

распространенное испытание — на скалывание вдоль волокон. Предел прочности при скалывании вдоль волокон для хвойных пород древесины почти не зависит от радиального или танген-тального направления и составляет 6,5-10 МПа. У лиственных пород при радиальном скалывании предел прочности в зависимости от породы находится в пределах 6-16 МПа, при танген-тальном на 10-30% выше, чем при радиальном. Прочность древесины при других случаях сдвига мало изучена. Предел прочности при сдвиге определяют по формуле х = Р/Ы. Здесь b — ширина площади скалывания, см; — длина площади скалывания, см.

Ударная вязкость древесины. При статическом изгибе на древесину действует определенная нагрузка, величина которой либо остается постоянной либо возрастает постепенно. Однако в отдельных случаях изгибающая нагрузка может действовать и более резко: при прыжке на лыжах с трамплина, большой нагрузке на мост или стул, ударе судна о причал. Здесь важно знать о поведении и прочности древесины. Нагрузка при ударном изгибе производится на специальной испытательной машине — маятниковом копре.

Определяют ударную вязкость древесины А, Дж/см 2 , по формуле А12 = Q/nh. Здесь Q — работа, затраченная над илом (по шкале копра), Дж; b — ширина образца, см; h — высота образца, см.

Твердость древесины. С твердостью древесины приходится сталкиваться при изучении ее стойкости на истирание (деревянные полы, паркет, деревянные настилы), при обработке режущим инструментом, скреплении гвоздями (тара строительные блоки). Твердость может быть различной на торцовой, радиальной и тангнентальной поверхностях. Наиболее твердая — торцовая поверхность (22-97 МПа в зависимости от породы при влажности 12%). Твердость радиальной и тангентальной поверхностей почти одинаковы между собой, а по отношению к торцовой ниже на 30-40%. При увеличении влажности твердость уменьшается.

Модули упругости. Способность материала деформироваться, т.е. его жесткость, характеризуется модулем упругости, который представляет собой отношение напряжения в материале к упругой деформации. При растяжении и сжатии модуль упругости Е, МПа, определяют по формуле Е = ст/е (модуль рода). Здесь о — нормальное напряжение, МПа, е — относительная деформация (величина безразмерная).

При действии сдвигающих сил модуль сдвига определяют по формуле G = т/У (модуль рода). Здесь т — касательное напряжение, МПа; У — относительный сдвиг (величина безразмерная), характеризуемый относительным искажением прямого угла. Для определения модуля упругости или сдвига при испытаниях одновременно измеряют напряжения и деформации (с высокой точностью).

Технологические свойства древесины имеют большое значение при изготовлении из нее изделий. К ним относятся обрабатываемость резанием, сопротивление истиранию, способность к загибу, склеиванию и окрашиванию, а также способность удерживать гвозди и другие металлические крепления. Многие из них зависят от объемной массы, влажности и элементов анатомического строения древесины.

Обрабатываемость резанием — пилением, строганием, долблением и сверлением — зависит от твердости древесины и определяется усилием на обработку и степенью чистоты поверхности. Твердая и плотная древесина обрабатывается легче и чище, чем мягкая. Чем выше влажность древесины, тем труднее ее обрабатывать; практически невозможно чисто обработать поверхность влажной древесины. На мягкой древесине (ива, тополь, осина, липа) часто остаются царапины и вмятины. Больше усилий затрачивается на обработку древесины с повышенной объемной массой.

Сопротивление истиранию зависит от направления волокон, объемной массы, твердости и влажности древесины. Сопротивление истиранию с торца значительно больше, чем с боковой поверхности. С повышением объемной массы и твердости сопротивление истиранию возрастает, а при увеличении влажности — уменьшается. Истирание древесины происходит в результате постепенного разрушения поверхности под воздействием мелких твердых частиц и трения, при этом мелкие частицы удаляются неровностями трущихся деталей.

Способность древесины к загибу учитывают при изготовлении гнутой мебели, колец, полуколец и других

криволинейных деталей, а также бочек, ободов, дуг, т.е. в тех случаях, когда необходимо придать форму шаблона без разрушения волокон древесины и снижения механической прочности. Способность к загибу, как правило, выше у кольцесосуди-стых пород (дуба, ясеня и др.) и некоторых рассеяннососудистых пород с повышенной пластичностью, например бука. Уплотнение древесины происходит за счет крупных сосудов, без разрушения волокон. Способность древесины к загибу повышается по мере увеличения ее влажности до точки насыщения, а также температуры. При вбивании гвоздей в твердую древесину приходится затрачивать больше усилий. В этом случае в древесине высверливают отверстия диаметром на 0,2-0,3 мм меньше толщины гвоздя.

Способность древесины удерживать гвозди, шурупы и другие крепления имеет большое значение как в строительстве, так и при сборке мебели. Гвоздь, вбитый в древесину, испытывает давление ее отдельных частей, которое и удерживает его за счет трения. Показателем способности древесины удерживать крепления является усилие, необходимое для выдергивания гвоздя (в Н на м 2 поверхности соприкосновения гвоздя с древесиной). Это усилие зависит от породы, направления волокон, объемной массы и влажности древесины. Поперек волокон оно на 25% выше, чем вдоль. С увеличением объемной массы удельное усилие возрастает. При высыхании древесины способность удерживать крепление снижается вследствие уменьшения упругости волокон. Удерживающая способность древесины твердых пород в несколько раз выше, чем мягких. Удельное усилие для выдергивания шурупов при прочих равных условиях в 2 раза выше, чем для выдергивания гвоздей.

Коэффициенты качества древесины. При»использовании древесины в различных отраслях промышленности, если решающее значение имеет не только прочность, но и масса деталей и узлов, изготовленных из разных материалов, комплексным показателем свойств материала, в том числе и древесины, является коэффициент качества.

Коэффициент качества — это отношение показателя механических свойств к плотности материала. Если сравнить коэффициенты качества* различных материалов при растяжении, окажется, что древесина по этому показателю стоит выше многих металлов, соперничая с лучшими сортами стали: Сталь легированная 0,95-2,3

Стальное литье 0,45-0,55

Коэффициенты качества могут быть определены для любого показателя прочности. При сравнении показателей хвойных и лиственных пород древесины можно установить, что лиственные породы по многим механическим свойствам превосходят хвойные. Однако показатели качества при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных.

Допускаемые напряжения для древесины. Прочностные показатели, полученные при различных видах нагрузки, являются предельными и не могут служить исходными данными при расчете конструкций из древесины по разным причинам. Во-первых, для удовлетворительной работы деревянных конструкций необходим определенный запас прочности. Во-вторых, в реальных условиях прочность древесины может быть ниже, чем при испытаниях, из-за несовпадения направления волокон, наклона волокон, изменения влажности, пороков в древесине (сучков, гнили и др.), влияния колебаний температуры и т. д. Поэтому при расчете конструкции принимают так называемые допускаемые напряжения. Отношение величины предела прочности к величине допускаемого напряжения называется коэффициентом запасам.

Читать еще:  Липа это хвойное или лиственное дерево

Вследствие анизотропности строения древесины и значительной изменчивости ее свойств во времени и под влиянием различных факторов коэффициенты запаса для нее устанавливаются более высокими, чем для металлов. Коэффициенты запаса для сжатия и скалывания составляют от 3 до 5, при растяжении

вдоль волокон — до 8-10. Модуль упругости при приближенных расчетах принимают независимо от породы равным 10000 МПа, если изделие эксплуатируют в сухом помещении, 7000 МПа для элементов, долго находящихся в увлажненном состоянии.

Для расчета элементов из сосны и ели, эксплуатируемы в сухом помещении при длительных нагрузках, принимают следующие допускаемые напряжения, МПа: изгиб и сжатие вдоль волокон — 10; растяжение вдоль волокон — 7; перерезание поперек волокон — 4,5; смятие поперек волокон — 3,5; скалывание вдоль волокон — 1-2; скалывание поперек волокон 0,5. Для древесины ясеня, дуба, клена допускаемые напряжения могут быть выше в 2 раза, кроме скалывающих напряжений, которые выше в 1,6 раза.

Факторы, влияющие на механические свойства древесины

В табл. сопоставлены объемная масса и показатели прочности древесины хвойных и лиственных пород.

Средние показатели механических свойств древесины хвойных и лиственных пород (при 15%-ной влажности)

Общая тенденция состоит в том, что чем плотнее древесина, тем большую прочность Она имеет. Плотность и прочность древесины возрастают, если лес растет на возвышенных местах и песчаных почвах.

Повышение влажности до предела гигроскопичности (до 30%) понижает механические свойства древесины. Высушивание же древесины на 1% (в пределах изменения влажности от 20 до 8%) повышает ее сопротивление сжатию и изгибу на 4%, растяжению — на 1%.

Пороки древесины понижают ее прочность.

Пороками называют недостатки отдельных участков древесины, снижающие ее качество и ограничивающие возможности использования.

Дефектами называют пороки механического происхождения, возникающие в древесине в процессе заготовки, транспортировки, сортировки, штабелевки и обработки.

Ввиду наличия пороков прочность бруса или доски не может быть оценена по результатам испытания малых чистых образцов. Поэтому в отличие от других материалов сорта лесоматериалов устанавливают не по прочности образцов, а на основании оценки характера, размеров и количества пороков.

Модуль упругости дерева сосна

Свойства древесины

Модуль упругости древесины

В наше время во всём мире возводятся здания и сооружения с применением деревянных клееных конструкций, имеющие пролеты от 20 до 120 м! При расчете таких конструкций (определении внутренних усилий от действия внешних нагрузок и воздействий) в обязательном порядке учитывается их деформированное состояние. Как правило, расчеты выполняются с использованием программных комплексов, где одной из многих исходных данных является величина модуля упругости древесины. В зависимости от величины модуля упругости можно получать различные значения внутренних усилий в сжатых и сжато-изгибаемых элементах деревянных конструкций и, как следствие, размеры поперечных сечений. Обоснованный выбор величины модуля упругости древесины является одной из важных задач при проектировании деревянных конструкций, который усугубляется еще и такими ее свойствами, как анизотропия и ползучесть.

В СНиП II-В.4–71 величина модуля упругости древесины вдоль волокон для конструкций, защищенных от нагрева при относительной влажности окружающего воздуха W≤75% и находящихся под действием постоянной и временной нагрузок, принималась равной Еk,0 = 10000 МПа. Такое ее значение применялось в расчетах деревянных конструкций по предельным состояниям второй группы. Что же касалось расчета на устойчивость, то здесь использовался безразмерный параметр в виде отношения кратковременного модуля упругости к временному сопротивлению сжатию.

В нормах поновее ( СНиП II–25–80 §5.6) при расчете деревянных конструкций по предельным состояниям второй группы, как и в предыдущих нормах, было принято Еk,0 = 10000 МПа, и это значение умножается на коэффициенты mв (условия эксплуатации), mт (температура воздуха) и mд (% нагрузок). В расчетах элементов на прочность по деформированной схеме и на устойчивость было сделано допущение, что отношение Е/Rc = 300 и, таким образом, зависит от породы и сорта древесины, а так же и от влажности материала (mв), длительности действия нагрузки (mд), температуры (mт), размеров сечения элементов. То есть в расчетах по деформированной схеме модуль упругости определяется из выражения Е1 = 300 Rc, где Rc – расчетное сопротивление сжатию древесины вдоль волокон.

В этом случае при значениях расчетного сопротивления древесины сосны и ели первого сорта Rc = 14–16 МПа модуль упругости Е1 = 4200–4800 МПа.

Практика эксплуатации деревянных конструкций показывает, что использование кратковременного модуля упругости древесины, равного Ек = 10000 МПа, в условиях длительной эксплуатации приводит к занижению расчетных прогибов конструкций. И наоборот, заниженное значение модуля упругости в расчетах по деформированной схеме приводит к неоправданно завышенным сечениям деревянных элементов.

Следует также отметить, что в старых нормах величина кратковременного модуля упругости Еk = 10000 МПа соответствовала влажности древесины W = 15%. В нормах поновее нормативная влажность древесины была принята W = 12%, но значение модуля упругости осталось прежним, что, наверное, не совсем корректно. В соответствии с ГОСТ 16483.9-73 при определении модуля упругости необходимо пользоваться коэффициентами в зависимости от влажности и плотности древесины. Модуль упругости пересчитывается на влажность 12% по следующей формуле: Е12 = Ек/k12, где коэффициент k12 берётся из таблицы:

В случае, если определение плотности не производилось, модуль упругости ( E12 ) вычисляют по формуле:

где α — поправочный коэффициент, равный: 0,019 — для хвойных пород; 0,012 — для кольцесосудистых пород; 0,013 — для бука; 0,010 — на 1 % влажности — для березы и других рассеянно-сосудистых пород.

Однако, это ещё не всё! В результате теоретических и экспериментальных исследований, касающихся величины соотношения длительного модуля упругости к кратковременному и с учетом совместного действия постоянной и снеговой нагрузок ( Денеш, Н.Д. Учет длительности действия снеговой и постоянной нагрузок при расчете прогибов деревянных конструкций / Изв. вузов. Строительство и архитектура. – 1990. – № 7. – С. 16–20. ) прогибы деревянных конструкций предлагается определять с учётом дополнительных коэффициентов:

– для постоянной нагрузки Еcon = 0,76 Ek;

– для снеговой нагрузки Еcon = 0,909 Ek.

Усреднённое значение коэффициента длительности для модуля упругости при совместном действии на конструкцию постоянной и снеговой нагрузок, γcon = (0,76+0,909)/2 = 0,83.

Таким образом, модуль упругости, допустим, дубовой доски плотностью 700 кг/м³ при влажности 14% под действием постоянной нагрузки следует считать: Econ=10000*0,981*0,76/1,25=5965 МПа (1,25 это коэффициент надежности по материалу γm), а в стропильной системе, где часть нагрузки является непостоянной (снеговой), этот же модуль упругости можно считать: Econ=10000*0.981*0.909/1.25=6514 МПа. Модуль упругости той же доски в расчётах конструкции на устойчивость согласто СНиП II–25–80 будет зависеть и от сорта, и от породы, сечения, условий работы, влажности: Е1=300Rc*mп*mд*mв. Е1=300*16*1,3*0,8*0,9=4493 МПа.

Столь пристальное внимание модулю упругости древесины я посвятил потому, что этот модуль напрямую влияет на расчёт прогибов деревянных балок, что для частного строительства каркасного дома является едва-ли не самым важным моментом всех расчётов в принципе!

Конечно, теория теорией, а хочется проверить всё самому. Я насобирал на стройке несколько валяющихся досок, замерил их линейные раззмеры, положил на козлы и придал сосредоточенную нагрузку посередине пролёта. Измерил прогиб по линейке с точностью до 1мм и попытался сопоставить полученные результаты с расчётным прогибом. Мой эксперимент показал, что модуль упругости валяющихся под открытым небом сосновых брусков неизвестного сорта даже с округлениями в худшую сторону никак не меньше 11000МПа, а в некоторых случаях доходит до 14350МПа. Правда, этот эксперимент пока был проведён на малой нагрузке (бутылка воды 6 кг), при малом пролёте (до 1,3 м) и с малым сечением (до 60 х 25 мм). Попробую как-нибудь протестировать сечение побольше (50х50, 50х150 мм) и с пролётом на несколько метров.

Читать еще:  Осенняя обрезка плодовых деревьев и кустарников

Влажность древесины

Влажности древесины — это отношение количества воды, содержащегося в древесине к ее весу.

Относительная влажность воздуха в сочетании с температурой задают так называемые "классы условий эксплуатации", которые, в свою очередь, в комбинации с классами по длительности нагружения определяют коэффициент условий работы. Последний же, в свою очередь, влияет почти на все характеристики древесины (на модуль упругости и на прочность при растяжении, сжатии и скалывании) в диапазоне +/-45%. Кроме того, значение влажности древесины напрямую задаёт коэффициент mв, ослабляющий характеристики древесины. Поэтому довольно важно представлять, какова же может быть влажность той или иной деревяшки в вашей конструкции и как она зависит от влажности и температуры воздуха.

Я не буду рассматривать свежеспиленную древесину — допустим, что наш пиломатериал уже полежал некоторое время под навесом и приобрёл так наываемую равновесную влажность. Древесина в зависимости от температуры и относительной влажности окружающего воздуха и собственной влажности обладает свойством или поглощать из воздуха пары воды и соответственно повышать собственную влажность, или выделять их из себя и понижать собственную влажность. При длительном (измеряемом десятками дней) нахождении древесины на воздухе неизменного состояния указанный выше процесс заканчивается и устанавливается так называемая равновесная влажность древесины. Каждому значению температуры и относительной влажности воздуха соответствует определенная влажность древесины, практически одинаковая для всех ее пород. Эту зависимость иллюстрирует диаграмма равновесной влажности П.С. Серговского или Н.Н. Чулицкого. Вопрос равновесной влажности и её расчёт с помощью калькуляторов рассмотрен в отдельной статье " Равновесная влажность древесины ".

Пример. В отапливаемом помещении зимой при температуре +20°С и влажности 40% равновесная влажность деревянной конструкции составит 8%. Если эта же конструкция будет работать на открытом воздухе летом при +20°С и влажности воздуха 85%, то равновесная влажность древесины составит уже 19%.

В жилых помещениях приняты нормы влажности и температуры не выше 60% и 23°С, что позволяет рассчитывать деревянные конструкции для влажности древесины до 12% — это 1 класс условий эксплуатации для клееной и неклееной древесины.

Расчётные сопротивления

Значения расчетных сопротивлений для сосны, ели и европейской лиственницы при влажности 12%, согласно СНиП II-25-80 (СП 64.13330.2011) приведены в табличке ниже.

Диаграмма равновесной влажности

прочность древесины

Если же используется древесина иных пород, то все эти расчётные сопротивления умножают на поправочный коэффициент, приведённый в следующей таблице (опять таки из СНиПа II-25-80):

Но и это ещё не конечная цифра, пригодная для расчётов!

Далее интересуемую величину расчётного сопротивления умножают на:

его значение для различных условий

эксплуатации приведено в табличке справа.

при температуре воздуха до +35°С mт=1;

при температуре свыше +50°С — mт=0,8;

промежуточные значения интерполируются.

для конструкций, в которых напряжения в

элементах, возникающие от постоянных и

временных длительных нагрузок, превышают 80% суммарного напряжения от всех нагрузок, — коэф. mд=0,8.

mа=0,8, если элементы подвергались глубокой пропитке антипиренами под давлением.

коэффициент надёжности по сроку службы: до 50 лет γсс=1; 50-100 лет — γсс=0,9; более 100 лет — γсс=0,8.

А так же более узкоспециализированные коэффициенты, которые в обычном домостроении вряд-ли понадобятся.

Допустим, есть доска из лиственницы, которую мы хотим использовать в качестве опорного бруса вдоль наружных стен на фундаменте.

К сожалению сорт доски я не знаю, потому предполагаем худший вариант — III сорт. Rc=8,5 МПа.

Поскольку это лиственница, коэф mп=1,2.

Максимальная влажность наружного воздуха может быть хоть 100%, потому коэф. mв мы принимаем 0,75.

Температура воздуха в районе фундамента вряд-ли поднимется выше +35°С, в отличие от стропильной системы, где Солнце может и до 50°С нагреть воздух, потому коэф. mт=1.

Нагрузка у нас самая что ни на есть долговременная, потому коэф. mд=0,8.

Лиственница — очень устойчивый материал к гниению, потому подвергать её глубокой пропитке чем-либо я не буду — коэф. ma=1.

Поскольку эта доска будет в основе всего дома, то срок её службы я бы хотел не менее 50 лет — коэф. γсс=0,9.

Итого, расчётное сопротивление сжатию моей доски будет: Rc1=8,5*1,2*0,75*1*0,8*1*0,9 = 5,5 МПа, если перевести это значение в интуитивно понятную величину, то доска будет выдерживать 56 кгс/см². Насколько это много или, быть может, мало? Каждый метр доски шириной 15см выдержит 84 тонны — это очень-очень много!

Упругость древесины

Упругостью называют способность материала возвращаться к первоначальному виду и размерам после : прекращения действия сил. При изучении упругих свойств древесины мы встречаемся со следующими терминами: предел упругости, предел пропорциональности, упругость, пластичность, модуль упругости, вязкость, хрупкость, гибкость.

Предел упругости, т. е. напряжение, начиная с которого при его дальнейшем увеличении появляются остаточные деформации при прекращении действия силы, обычно определяется лишь условно. В частности, для металлов за предел упругости условно принимают напряжение, которое вызывает деформацию, не превышающую 0,001—0,03%. В отношении древесины эта условная величина является неприемлемой, так как изменения свойств древесины разных пород в разных ее состояниях значительно превышают этот условный предел. Даже сравнительно мало чувствительные приборы отмечают в древесине остаточные деформации почти с самого начала загружения. Поэтому характеристику «предел упругости» по отношению к древесине ,не применяют.

Пределом пропорциональности называют то напряжение, ниже которого деформация материала пропорциональна действующей силе. В то время как в металлах предел упругости (в его условном понимании) и предел пропорциональности различаются столь мало, что их обыкновенно считают совпадающими, в древесине предел пропорциональности часто очень близок к временному сопротивлению.

Численная характеристика упругости может быть выражена, как отношение упругой деформации к остаточной при каком-либо данном напряжении материала.

Упругость древесины tmp22F 2

где f—деформации материала.

Таблица 31 Упругость древесины при напряжении изгиба около 300 кг/см 2 (по Перелыгину)

Модуль упругости

Модуль упругости характеризует свойство материала давать большую или меньшую деформацию под действием данной нагрузки. По величине модуля упругости можно сравнивать жесткость (устойчивость) материала в пределах упругости. ремонт мебели своими руками

Модуль упругости первого рода В при растяжении вдоль волокон колеблется в зависимости от породы древесины в пределах от 80 000 (для бука) до 129000 кг/см2 (для лиственницы).

С повышением влажности модуль упругости уменьшается.

Средний поправочный коэффициент на влажность — 2% величины модуля на 1% влажности древесины.

Модуль упругости при растяжении поперек волокон в радиальном ,направлении примерно в 10 раз ниже, чем при растяжении вдоль волокон. При этом модуль упругости при растяжении поперек волокон в радиальном направлении примерно в три раза выше, чем в тангентальном для хвойных пород и в два раза выше для лиственных пород.

Древесина хвойных пород при одном и том же объемном ,весе по упругости выше древесины лиственных пород.

Все ручки молотков во избежание отдачи должны делаться из упругой древесины.

Модуль упругости второго рода G (при кручении) у древесины значительно ниже, чем Е.

Влияние влажности на модуль упругости G незначительно и его можно не учитывать.

Релаксация, или упругое последействие

Древесина, как и многие другие материалы органического происхождения, обладает свойством изменять величину деформации при нагружении в зависимости от скорости нагружения. Кроме того, эта деформация увеличивается даже в том случае, когда нагрузка не возрастает. При разгрузке же и после полного прекращения действия сил материал приходит в окончательно установившуюся форму не сразу, а постепенно. Это свойство носит название релаксации, или упругого последействия.

При всех видах статических испытаний древесины релаксация может играть очень большую роль и ее необходимо учитывать. При динамических нагрузках влияние релаксации исключено.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector